Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 928
Filtrar
1.
Eur J Hum Genet ; 32(4): 426-434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316953

RESUMO

GEMIN5 exerts key biological functions regulating pre-mRNAs intron removal to generate mature mRNAs. A series of patients were reported harboring mutations in GEMIN5. No treatments are currently available for this disease. We treated two of these patients with oral Coenzyme Q10 (CoQ10), which resulted in neurological improvements, although MRI abnormalities remained. Whole Exome Sequencing demonstrated compound heterozygosity at the GEMIN5 gene in both cases: Case one: p.Lys742* and p.Arg1016Cys; Case two: p.Arg1016Cys and p.Ser411Hisfs*6. Functional studies in fibroblasts revealed a decrease in CoQ10 biosynthesis compared to controls. Supplementation with exogenous CoQ10 restored it to control intracellular CoQ10 levels. Mitochondrial function was compromised, as indicated by the decrease in oxygen consumption, restored by CoQ10 supplementation. Transcriptomic analysis of GEMIN5 patients compared with controls showed general repression of genes involved in CoQ10 biosynthesis. In the rigor mortis defective flies, CoQ10 levels were decreased, and CoQ10 supplementation led to an improvement in the adult climbing assay performance, a reduction in the number of motionless flies, and partial restoration of survival. Overall, we report the association between GEMIN5 dysfunction and CoQ10 deficiency for the first time. This association opens the possibility of oral CoQ10 therapy, which is safe and has no observed side effects after long-term therapy.


Assuntos
Ataxia , Doenças Mitocondriais , Debilidade Muscular , Ubiquinona , Ubiquinona/deficiência , Adulto , Humanos , Ubiquinona/genética , Ubiquinona/uso terapêutico , Ubiquinona/metabolismo , Seguimentos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Mutação , Proteínas do Complexo SMN/genética
2.
Nat Biomed Eng ; 8(2): 118-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38057426

RESUMO

Spinal muscular atrophy (SMA) is caused by mutations in SMN1. SMN2 is a paralogous gene with a C•G-to-T•A transition in exon 7, which causes this exon to be skipped in most SMN2 transcripts, and results in low levels of the protein survival motor neuron (SMN). Here we show, in fibroblasts derived from patients with SMA and in a mouse model of SMA that, irrespective of the mutations in SMN1, adenosine base editors can be optimized to target the SMN2 exon-7 mutation or nearby regulatory elements to restore the normal expression of SMN. After optimizing and testing more than 100 guide RNAs and base editors, and leveraging Cas9 variants with high editing fidelity that are tolerant of different protospacer-adjacent motifs, we achieved the reversion of the exon-7 mutation via an A•T-to-G•C edit in up to 99% of fibroblasts, with concomitant increases in the levels of the SMN2 exon-7 transcript and of SMN. Targeting the SMN2 exon-7 mutation via base editing or other CRISPR-based methods may provide long-lasting outcomes to patients with SMA.


Assuntos
Atrofia Muscular Espinal , Proteínas de Ligação a RNA , Camundongos , Animais , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN/genética , RNA Guia de Sistemas CRISPR-Cas , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Éxons/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
3.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958537

RESUMO

The survival motor neuron (SMN) complex is a multi-megadalton complex involved in post-transcriptional gene expression in eukaryotes via promotion of the biogenesis of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). The functional center of the complex is formed from the SMN/Gemin2 subunit. By binding the pentameric ring made up of the Sm proteins SmD1/D2/E/F/G and allowing for their transfer to a uridine-rich short nuclear RNA (UsnRNA), the Gemin2 protein in particular is crucial for the selectivity of the Sm core assembly. It is well established that post-translational modifications control UsnRNP biogenesis. In our work presented here, we emphasize the crucial role of Gemin2, showing that the phospho-status of Gemin2 influences the capacity of the SMN complex to condense in Cajal bodies (CBs) in vivo. Additionally, we define Gemin2 as a novel and particular binding partner and phosphorylation substrate of the mTOR pathway kinase ribosomal protein S6 kinase beta-1 (p70S6K). Experiments using size exclusion chromatography further demonstrated that the Gemin2 protein functions as a connecting element between the 6S complex and the SMN complex. As a result, p70S6K knockdown lowered the number of CBs, which in turn inhibited in vivo UsnRNP synthesis. In summary, these findings reveal a unique regulatory mechanism of UsnRNP biogenesis.


Assuntos
Proteínas de Ligação a RNA , Proteínas Quinases S6 Ribossômicas 70-kDa , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosforilação , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN/genética , Uridina/metabolismo
4.
Nat Commun ; 14(1): 7384, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968267

RESUMO

Spinal muscular atrophy is an autosomal recessive neuromuscular disease caused by mutations in the multifunctional protein Survival of Motor Neuron, or SMN. Within the nucleus, SMN localizes to Cajal bodies, which are associated with nucleoli, nuclear organelles dedicated to the first steps of ribosome biogenesis. The highly organized structure of the nucleolus can be dynamically altered by genotoxic agents. RNAP1, Fibrillarin, and nucleolar DNA are exported to the periphery of the nucleolus after genotoxic stress and, once DNA repair is fully completed, the organization of the nucleolus is restored. We find that SMN is required for the restoration of the nucleolar structure after genotoxic stress. During DNA repair, SMN shuttles from the Cajal bodies to the nucleolus. This shuttling is important for nucleolar homeostasis and relies on the presence of Coilin and the activity of PRMT1.


Assuntos
Atrofia Muscular Espinal , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucléolo Celular/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Neurônios Motores/metabolismo , Proteínas do Complexo SMN/metabolismo , Corpos Enovelados/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
5.
Nat Commun ; 14(1): 6580, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852981

RESUMO

Spliceosomal snRNPs are multicomponent particles that undergo a complex maturation pathway. Human Sm-class snRNAs are generated as 3'-end extended precursors, which are exported to the cytoplasm and assembled together with Sm proteins into core RNPs by the SMN complex. Here, we provide evidence that these pre-snRNA substrates contain compact, evolutionarily conserved secondary structures that overlap with the Sm binding site. These structural motifs in pre-snRNAs are predicted to interfere with Sm core assembly. We model structural rearrangements that lead to an open pre-snRNA conformation compatible with Sm protein interaction. The predicted rearrangement pathway is conserved in Metazoa and requires an external factor that initiates snRNA remodeling. We show that the essential helicase Gemin3, which is a component of the SMN complex, is crucial for snRNA structural rearrangements during snRNP maturation. The SMN complex thus facilitates ATP-driven structural changes in snRNAs that expose the Sm site and enable Sm protein binding.


Assuntos
Precursores de RNA , RNA Nuclear Pequeno , Humanos , RNA Nuclear Pequeno/metabolismo , Proteínas do Complexo SMN/metabolismo , Precursores de RNA/metabolismo , Células HeLa , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas Centrais de snRNP/genética
6.
Oncogene ; 42(37): 2751-2763, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573407

RESUMO

The nuclear factor erythroid 2-like 2 (NFE2L2; NRF2) signaling pathway is frequently deregulated in human cancers. The critical functions of NRF2, other than its transcriptional activation, in cancers remain largely unknown. Here, we uncovered a previously unrecognized role of NRF2 in the regulation of RNA splicing. Global splicing analysis revealed that NRF2 knockdown in non-small cell lung cancer (NSCLC) A549 cells altered 839 alternative splicing (AS) events in 485 genes. Mechanistic studies demonstrated that NRF2 transcriptionally regulated SMN mRNA expression by binding to two antioxidant response elements in the SMN1 promoter. Post-transcriptionally, NRF2 was physically associated with the SMN protein. The Neh2 domain of NRF2, as well as the YG box and the region encoded by exon 7 of SMN, were required for their interaction. NRF2 formed a complex with SMN and Gemin2 in nuclear gems and Cajal bodies. Furthermore, the NRF2-SMN interaction regulated RNA splicing by expressing SMN in NRF2-knockout HeLa cells, reverting some of the altered RNA splicing. Moreover, SMN overexpression was significantly associated with alterations in the NRF2 pathway in patients with lung squamous cell carcinoma from The Cancer Genome Atlas. Taken together, our findings suggest a novel therapeutic strategy for cancers involving an aberrant NRF2 pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Atrofia Muscular Espinal , Humanos , Células HeLa , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas do Complexo SMN/genética , Proteínas do Complexo SMN/metabolismo , Proteínas de Ligação a RNA/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neurônios Motores/metabolismo , Splicing de RNA/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
7.
Nat Commun ; 14(1): 4504, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587144

RESUMO

SMNDC1 is a Tudor domain protein that recognizes di-methylated arginines and controls gene expression as an essential splicing factor. Here, we study the specific contributions of the SMNDC1 Tudor domain to protein-protein interactions, subcellular localization, and molecular function. To perturb the protein function in cells, we develop small molecule inhibitors targeting the dimethylarginine binding pocket of the SMNDC1 Tudor domain. We find that SMNDC1 localizes to phase-separated membraneless organelles that partially overlap with nuclear speckles. This condensation behavior is driven by the unstructured C-terminal region of SMNDC1, depends on RNA interaction and can be recapitulated in vitro. Inhibitors of the protein's Tudor domain drastically alter protein-protein interactions and subcellular localization, causing splicing changes for SMNDC1-dependent genes. These compounds will enable further pharmacological studies on the role of SMNDC1 in the regulation of nuclear condensates, gene regulation and cell identity.


Assuntos
Aptâmeros de Nucleotídeos , Proteínas do Complexo SMN , Condensados Biomoleculares , Carbocianinas , Salpicos Nucleares , Domínio Tudor
8.
Acta Neuropathol ; 146(3): 477-498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37369805

RESUMO

GEMIN5 is essential for core assembly of small nuclear Ribonucleoproteins (snRNPs), the building blocks of spliceosome formation. Loss-of-function mutations in GEMIN5 lead to a neurodevelopmental syndrome among patients presenting with developmental delay, motor dysfunction, and cerebellar atrophy by perturbing SMN complex protein expression and assembly. Currently, molecular determinants of GEMIN5-mediated disease have yet to be explored. Here, we identified SMN as a genetic suppressor of GEMIN5-mediated neurodegeneration in vivo. We discovered that an increase in SMN expression by either SMN gene therapy replacement or the antisense oligonucleotide (ASO), Nusinersen, significantly upregulated the endogenous levels of GEMIN5 in mammalian cells and mutant GEMIN5-derived iPSC neurons. Further, we identified a strong functional association between the expression patterns of SMN and GEMIN5 in patient Spinal Muscular Atrophy (SMA)-derived motor neurons harboring loss-of-function mutations in the SMN gene. Interestingly, SMN binds to the C-terminus of GEMIN5 and requires the Tudor domain for GEMIN5 binding and expression regulation. Finally, we show that SMN upregulation ameliorates defective snRNP biogenesis and alternative splicing defects caused by loss of GEMIN5 in iPSC neurons and in vivo. Collectively, these studies indicate that SMN acts as a regulator of GEMIN5 expression and neuropathologies.


Assuntos
Atrofia Muscular Espinal , Proteínas de Ligação a RNA , Humanos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN/genética , Domínio Tudor
9.
Trends Biochem Sci ; 48(8): 689-698, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37156649

RESUMO

Biomolecular condensates (BMCs) can facilitate or inhibit diverse cellular functions. BMC formation is driven by noncovalent protein-protein, protein-RNA, and RNA-RNA interactions. Here, we focus on Tudor domain-containing proteins - such as survival motor neuron protein (SMN) - that contribute to BMC formation by binding to dimethylarginine (DMA) modifications on protein ligands. SMN is present in RNA-rich BMCs, and its absence causes spinal muscular atrophy (SMA). SMN's Tudor domain forms cytoplasmic and nuclear BMCs, but its DMA ligands are largely unknown, highlighting open questions about the function of SMN. Moreover, DMA modification can alter intramolecular interactions and affect protein localization. Despite these emerging functions, the lack of direct methods of DMA detection remains an obstacle to understanding Tudor-DMA interactions in cells.


Assuntos
Proteínas de Ligação a RNA , RNA , Ligantes , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN/metabolismo
10.
Mol Carcinog ; 62(8): 1107-1118, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37067402

RESUMO

A splicing factor is as an important upstream regulator of the alternative splicing process. Hence, it is considered to be a therapeutic target for hepatocellular carcinoma (HCC) tissues. In this study, a systems biology-based methodology was used to screen the essential splicing factors precisely and efficiently. A more comprehensive set of alternative splicing events, which were linked to patient survival, was constructed by performing the bivariate Cox regression and receiver operating characteristic (ROC) analyses. Then, the expression data was obtained from The Cancer Genome Altas (TCGA) data set and the three Gene Expression Omnibus (GEO) datasets. It was used to obtain the survival-related splicing factors, which showed a significantly differential expression in the tumor and normal tissues. Using the topological properties of the bipartite graph association network of the alternative splicing events and the splicing factors, we identified the five key splicing factors. Among them, four factors were found to play a prominent role in the development of HCC. The remaining factor was Survival Motor Neuron Domain Containing 1(SMNDC1), which showed a positive correlation with the immune cell infiltration, the biomarkers of immune cells, and the immune checkpoint genes. By performing quantitative real-time polymerase chain reaction analyses, we proved that SMNDC1 was overexpressed in tumor cells. Following the knockdown of its expression, the proliferation and the migration of HCC cells could be suppressed. These results confirmed that the screening method of this study was reliable and accurate. It provided new insights into the mechanism through which splicing factors elicit tumor development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Biologia de Sistemas , Fatores de Processamento de RNA/genética , Proteínas do Complexo SMN
11.
Genes (Basel) ; 14(3)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36980979

RESUMO

GEMIN5 is a multifunctional RNA-binding protein required for the assembly of survival motor neurons. Several bi-allelic truncating and missense variants in this gene are reported to cause a neurodevelopmental disorder characterized by cerebellar atrophy, intellectual disability (ID), and motor dysfunction. Whole exome sequencing of a Pakistani consanguineous family with three brothers affected by ID, cerebral atrophy, mobility, and speech impairment revealed a novel homozygous 3bp-deletion NM_015465.5:c.3162_3164del that leads to the loss of NM_015465.5 (NP_056280.2):p. (Asp1054_Ala1055delinsGlu) amino acid in one of the α-helixes of the tetratricopeptide repeats of GEMIN5. In silico 3D representations of the GEMIN5 dimerization domain show that this variant likely affects the orientation of the downstream sidechains out of the helix axis, which would affect the packing with neighboring helices. The phenotype of all affected siblings overlaps well with previously reported patients, suggesting that NM_015465.5: c.3162_3164del (NP_056280.2):p. (Asp1054_Ala1055delinsGlu) is a novel GEMIN5 pathogenic variant. Overall, our data expands the molecular and clinical phenotype of the recently described neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) syndrome.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Deficiência Intelectual/etiologia , Repetições de Tetratricopeptídeos , Linhagem , Transtornos do Neurodesenvolvimento/complicações , Atrofia/genética , Proteínas do Complexo SMN/genética
12.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768569

RESUMO

In the cell, RNA exists and functions in a complex with RNA binding proteins (RBPs) that regulate each step of the RNA life cycle from transcription to degradation. Central to this regulation is the role of several molecular chaperones that ensure the correct interactions between RNA and proteins, while aiding the biogenesis of large RNA-protein complexes (ribonucleoproteins or RNPs). Accurate formation of RNPs is fundamentally important to cellular development and function, and its impairment often leads to disease. The survival motor neuron (SMN) protein exemplifies this biological paradigm. SMN is part of a multi-protein complex essential for the biogenesis of various RNPs that function in RNA metabolism. Mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy (SMA). A fundamental question in SMA biology is how selective motor system dysfunction results from reduced levels of the ubiquitously expressed SMN protein. Recent clarification of the central role of the SMN complex in RNA metabolism and a thorough characterization of animal models of SMA have significantly advanced our knowledge of the molecular basis of the disease. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP biogenesis. We discuss developments in our understanding of SMN activity as a molecular chaperone of RNPs and how disruption of SMN-dependent RNA pathways can contribute to the SMA phenotype.


Assuntos
Atrofia Muscular Espinal , Doenças Neurodegenerativas , Animais , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Proteínas do Complexo SMN/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , RNA/genética , RNA/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
13.
PeerJ ; 10: e14317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405016

RESUMO

Background: The role of miRNA in depression is widely described by many researchers. miRNA is a final product of many genes involved in its formation (maturation). One of the final steps in the formation of miRNAs is the formation of the RISC complex, called the RNA-induced silencing complex, which includes, among others, GEMIN proteins. Single-nucleotide polymorphisms (SNPs) may lead to disturbance of miRNA biogenesis and function. The objective of our research was to assess the relationship between the appearance of depression and single nucleotide polymorphisms in the GEMIN3 (rs197388) and GEMIN4 (rs7813; rs3744741) genes. Our research provides new knowledge on the genetic factors that influence the risk of depression. They can be used as an element of diagnostics helpful in identifying people at increased risk, as well as indicating people not at risk of depression. Methods: A total of 218 participants were examined, including individuals with depressive disorders (n = 102; study group) and healthy people (n = 116, control group). All the patients in the study group and the people in the control group were non-related native Caucasian Poles from central Poland. Blood was collected from study and control groups in order to assess the SNPs of GEMIN genes. Results: An analysis of the results obtained showed that in patient population, the risk of depression is almost doubled by polymorphic variants of the genes: rs197388/GEMIN3 genotype A/A in the recessive model and rs3744741/GEMIN4 genotype T/T, codominant and recessive model. The dual role of rs7813/GEMIN4 is noteworthy, where the G/A genotype in the codominant and over dominant model protects against depression.


Assuntos
Depressão , MicroRNAs , Humanos , Polônia/epidemiologia , Depressão/epidemiologia , MicroRNAs/genética , Genótipo , Proteínas do Complexo SMN/genética
14.
Biomolecules ; 12(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291733

RESUMO

Survival motor neuron (SMN) is an essential and ubiquitously expressed protein that participates in several aspects of RNA metabolism. SMN deficiency causes a devastating motor neuron disease called spinal muscular atrophy (SMA). SMN forms the core of a protein complex localized at the cytoplasm and nuclear gems and that catalyzes spliceosomal snRNP particle synthesis. In cultured motor neurons, SMN is also present in dendrites and axons, and forms part of the ribonucleoprotein transport granules implicated in mRNA trafficking and local translation. Nevertheless, the distribution, regulation, and role of SMN at the axons and presynaptic motor terminals in vivo are still unclear. By using conventional confocal microscopy and STED super-resolution nanoscopy, we found that SMN appears in the form of granules distributed along motor axons at nerve terminals. Our fluorescence in situ hybridization and electron microscopy studies also confirmed the presence of ß-actin mRNA, ribosomes, and polysomes in the presynaptic motor terminal, key elements of the protein synthesis machinery involved in local translation in this compartment. SMN granules co-localize with the microtubule-associated protein 1B (MAP1B) and neurofilaments, suggesting that the cytoskeleton participates in transporting and positioning the granules. We also found that, while SMN granules are physiologically downregulated at the presynaptic element during the period of postnatal maturation in wild-type (non-transgenic) mice, they accumulate in areas of neurofilament aggregation in SMA mice, suggesting that the high expression of SMN at the NMJ, together with the cytoskeletal defects, contribute to impairing the bi-directional traffic of proteins and organelles between the axon and the presynaptic terminal.


Assuntos
Filamentos Intermediários , Atrofia Muscular Espinal , Animais , Camundongos , Actinas/metabolismo , Modelos Animais de Doenças , Hibridização in Situ Fluorescente , Filamentos Intermediários/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas do Complexo SMN/genética , Proteínas do Complexo SMN/metabolismo
15.
Nat Commun ; 13(1): 5453, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114190

RESUMO

Survival of motor neuron (SMN) functions in diverse biological pathways via recognition of symmetric dimethylarginine (Rme2s) on proteins by its Tudor domain, and deficiency of SMN leads to spinal muscular atrophy. Here we report a potent and selective antagonist with a 4-iminopyridine scaffold targeting the Tudor domain of SMN. Our structural and mutagenesis studies indicate that both the aromatic ring and imino groups of compound 1 contribute to its selective binding to SMN. Various on-target engagement assays support that compound 1 specifically recognizes SMN in a cellular context and prevents the interaction of SMN with the R1810me2s of RNA polymerase II subunit POLR2A, resulting in transcription termination and R-loop accumulation mimicking SMN depletion. Thus, in addition to the antisense, RNAi and CRISPR/Cas9 techniques, potent SMN antagonists could be used as an efficient tool to understand the biological functions of SMN.


Assuntos
RNA Polimerase II , Proteínas do Complexo SMN , Humanos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/metabolismo , RNA Polimerase II/efeitos dos fármacos , RNA Polimerase II/metabolismo , Proteínas do Complexo SMN/antagonistas & inibidores , Proteínas do Complexo SMN/efeitos dos fármacos , Proteínas do Complexo SMN/metabolismo
16.
Nat Commun ; 13(1): 5166, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056043

RESUMO

Gemin5 in the Survival Motor Neuron (SMN) complex serves as the RNA-binding protein to deliver small nuclear RNAs (snRNAs) to the small nuclear ribonucleoprotein Sm complex via its N-terminal WD40 domain. Additionally, the C-terminal region plays an important role in regulating RNA translation by directly binding to viral RNAs and cellular mRNAs. Here, we present the three-dimensional structure of the Gemin5 C-terminal region, which adopts a homodecamer architecture comprised of a dimer of pentamers. By structural analysis, mutagenesis, and RNA-binding assays, we find that the intact pentamer/decamer is critical for the Gemin5 C-terminal region to bind cognate RNA ligands and to regulate mRNA translation. The Gemin5 high-order architecture is assembled via pentamerization, allowing binding to RNA ligands in a coordinated manner. We propose a model depicting the regulatory role of Gemin5 in selective RNA binding and translation. Therefore, our work provides insights into the SMN complex-independent function of Gemin5.


Assuntos
RNA Nuclear Pequeno , Ribonucleoproteínas Nucleares Pequenas , Ligantes , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo
17.
Cell Rep ; 40(9): 111288, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044849

RESUMO

Insulin expression is primarily restricted to the pancreatic ß cells, which are physically or functionally depleted in diabetes. Identifying targetable pathways repressing insulin in non-ß cells, particularly in the developmentally related glucagon-secreting α cells, is an important aim of regenerative medicine. Here, we perform an RNA interference screen in a murine α cell line to identify silencers of insulin expression. We discover that knockdown of the splicing factor Smndc1 triggers a global repression of α cell gene-expression programs in favor of increased ß cell markers. Mechanistically, Smndc1 knockdown upregulates the ß cell transcription factor Pdx1 by modulating the activities of the BAF and Atrx chromatin remodeling complexes. SMNDC1's repressive role is conserved in human pancreatic islets, its loss triggering enhanced insulin secretion and PDX1 expression. Our study identifies Smndc1 as a key factor connecting splicing and chromatin remodeling to the control of insulin expression in human and mouse islet cells.


Assuntos
Montagem e Desmontagem da Cromatina , Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Fatores de Processamento de RNA , Splicing de RNA , Proteínas do Complexo SMN , Animais , Células Secretoras de Glucagon/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Splicing de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas do Complexo SMN/metabolismo , Fatores de Transcrição/metabolismo
19.
Life Sci Alliance ; 5(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393353

RESUMO

Dysfunction of RNA-binding proteins is often linked to a wide range of human disease, particularly with neurological conditions. Gemin5 is a member of the survival of the motor neurons (SMN) complex, a ribosome-binding protein and a translation reprogramming factor. Recently, pathogenic mutations in Gemin5 have been reported, but the functional consequences of these variants remain elusive. Here, we report functional and structural deficiencies associated with compound heterozygosity variants within the Gemin5 gene found in patients with neurodevelopmental disorders. These clinical variants are located in key domains of Gemin5, the tetratricopeptide repeat (TPR)-like dimerization module and the noncanonical RNA-binding site 1 (RBS1). We show that the TPR-like variants disrupt protein dimerization, whereas the RBS1 variant confers protein instability. All mutants are defective in the interaction with protein networks involved in translation and RNA-driven pathways. Importantly, the TPR-like variants fail to associate with native ribosomes, hampering its involvement in translation control and establishing a functional difference with the wild-type protein. Our study provides insights into the molecular basis of disease associated with malfunction of the Gemin5 protein.


Assuntos
Doenças do Sistema Nervoso , Proteínas de Ligação a RNA , Ribossomos , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteínas do Complexo SMN/genética , Proteínas do Complexo SMN/metabolismo
20.
Neuroscience ; 491: 32-42, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314252

RESUMO

Increasing evidence points to the involvement of cell types other than motor neurons in both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), the predominant motor neuron disease in adults and infants, respectively. The contribution of glia to ALS pathophysiology is well documented. Studies have since focused on evaluating the contribution of glia in SMA. Here, we made use of the Drosophila model to ask whether the survival motor neuron (Smn) protein, the causative factor for SMA, is required selectively in glia. We show that the specific loss of Smn function in glia during development reduced survival to adulthood but did not affect motoric performance or neuromuscular junction (NMJ) morphology in flies. In contrast, gain rather than loss of ALS-linked TDP-43, FUS or C9orf72 function in glia induced significant defects in motor behaviour in addition to reduced survival. Furthermore, glia-specific gain of TDP-43 function caused both NMJ defects and muscle atrophy. Smn together with Gemins 2-8 and Unrip, form the Smn complex which is indispensable for the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). We show that glial-selective perturbation of Smn complex components or disruption of key snRNP biogenesis factors pICln and Tgs1, induce deleterious effects on adult fly viability but, similar to Smn reduction, had no negative effect on neuromuscular function. Our findings suggest that the role of Smn in snRNP biogenesis as part of the Smn complex is required in glia for the survival of the organism, underscoring the importance of glial cells in SMA disease formation.


Assuntos
Atrofia Muscular Espinal , Envelhecimento , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Neurônios Motores/fisiologia , Neuroglia/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...